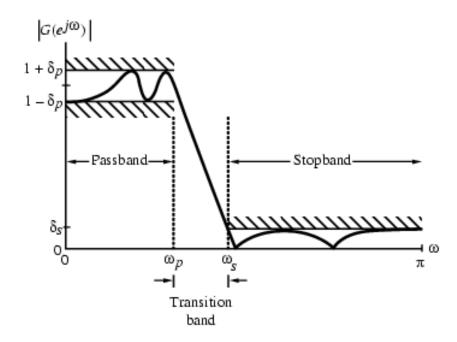
The magnitude response of a digital lowpass filter may be given as indicated below



Filter specification parameters

- ω_p passband edge frequency
- ω_s stopband edge frequency
- δ_p **peak ripple value** in the passband
- δ_s **peak ripple value** in the stopband

 Practical specifications are often given in terms of loss function (in dB)

•
$$G(\omega) = -20\log_{10} G(e^{j\omega})$$

Peak passband ripple

$$\alpha_p = -20\log_{10}(1 - \delta_p) \text{ dB}$$

Minimum stopband attenuation

$$\alpha_s = -20\log_{10}(\delta_s) \, \mathrm{dB}$$

- In practice, passband edge frequency F_p and stopband edge frequency F_s are specified in Hz
- For digital filter design, normalized bandedge frequencies need to be computed from specifications in Hz using

$$\omega_p = \frac{\Omega_p}{F_T} = \frac{2\pi F_p}{F_T} = 2\pi F_p T$$
$$\omega_s = \frac{\Omega_s}{F_T} = \frac{2\pi F_s}{F_T} = 2\pi F_s T$$

• Example - Let kHz, kHz, and $F_{p} = 7$ $F_{s} = 3$ kHz $F_{T} = 25$

Then

$$\omega_p = \frac{2\pi (7 \times 10^3)}{25 \times 10^3} = 0.56\pi$$
$$\omega_s = \frac{2\pi (3 \times 10^3)}{25 \times 10^3} = 0.24\pi$$

Selection of Filter Type

- The transfer function H(z) meeting the specifications must be a causal transfer function
- For IIR real digital filter the transfer function is a real rational function of

$$H(z) = \frac{p_0 + p_1 z^{-1} + p_2 z^{-2} + z^{-1} + p_M z^{-M}}{d_0 + d_1 z^{-1} + d_2 z^{-2} + \dots + d_N z^{-N}}$$

• *H*(*z*) must be stable and of lowest order *N* or *M* for reduced computational complexity

Selection of Filter Type

 FIR real digital filter transfer function is a polynomial in _Z-1 (order N) with real coefficients

$$H(z) = \sum_{n=0}^{N} h[n] z^{-n}$$

- For reduced computational complexity, degree N of H(z) must be as small as possible
- If a linear phase is desired then we must have:

$$h[n] = \pm h[N-n]$$

• (More on this later)

Constraints and Performance Measures

- BIBO stability:
 - If $|x(n)| < \infty$, it is required that $|y(n)| < \infty$.
 - Poles should be inside unit circle: $|p_j| < 1$ (for causal systems where h(n)=0 for n < 0.)
- Dynamic range overflow:
 - Intermediate or final result should not cause overflow
- Quantization error:
 - Should be bounded.
 - Should not cause instability.
- Speed:
 - Throughput rate and number of operations per data sample
- Hardware:
 - Memory I/O, address calculation, register footprint, special hardware, etc.

DIFFERENCE BETWEEN IIR FILTER AND FIR FILTER

- Let {h[n}: impulse response {x(n)}: input, {y(n)}: output
- Finite impulse response (FIR) filter:

• Infinite impulse response (IIR) filter

$$y(n) = \sum_{i=1}^{P} a(i) y(n-i) + \sum_{k=0}^{Q} b(k) x(n-k)$$

$$y(n) = \sum_{j=0}^{J-1} h(j) x(n-j)$$

$$\frac{Y(z)}{X(z)} = \frac{\sum_{m=0}^{Q} b(m) z^{-m}}{1 + \sum_{k=1}^{P} a(k) z^{-k}} = \frac{B(z)V(z)}{A(z)V(z)}$$

• Impulse input:

if $x(n)=\delta(n)$, y(n)=h(n) is the impulse response that has finite extent.

• Computation is the same as convolution.

IIR Digital Filter

- The length of {y(n)} may be infinite!
- Stability concerns:
 - The magnitude of y(n)
 may become infinity
 even if all x(n) are finite!
 - coefficient values,
 - quantization error

 FIR filter can be implemented using direct form or fast convolution methods like FFT ,hence STABLE.

Realized by Non-Recursive methods.

IIR Digital Filter

- IIR filters are often factored into products (cascade realization) or sum (parallel realization) of 1st order or 2nd order sections due to numerical concerns(Manual Calculation only possible)
- Realised by Recursive(Feedback) methods.

- They have LINEAR PHASE.
- Less susceptible to Noise.
- To design we have
 a)Park Mc Clellan's method.
 b)Fourier Series method.
 c)Frequency Sampling OR Inverse Fourier Transform method.
 d)Window technique.

E.g.

Rectangular, Hamming, Hanning, B artlett, Blackmann, Kaiser Windows.

e)Minimax or Optimal Filter Design.

IIR Digital Filter

- They don't have linear phase & hence are used at places where phase distortion is tolerable.
- More susceptible to Noise.
- To design we have

a)Impulse Invarience method.b)Bilinear Transformation method.c)Backward difference method.

- Storage Requirements & Arithmetic operation is more here.
- Greater Flexibility to control the shape of their Magnitude response & Realization Efficiency.

IIR Digital Filter

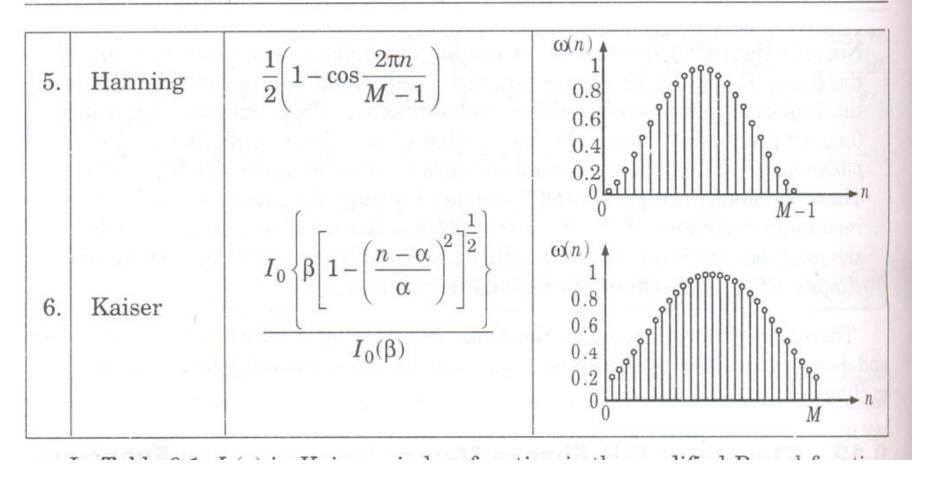
- Storage Requirements & Arithmetic operation is less.
- Less Flexibility to control the shape of their Magnitude response.
- Often derived from analog filters

Various other window functions

Sr. No.	Name of Window	Time-domain sequence, $\omega(n), 0 \le n \le M - 1$	Shape of window function
1.	Rectangular	1	$ \begin{array}{c} \omega(n) \\ 1 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0 \end{array} $
2.	Bartlett (triangular)	$1 - \frac{2\left n - \frac{M-1}{2}\right }{M-1}$	$ \begin{array}{c} \omega(n) \\ 1 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0 \\ 0 \\ 0 \\ M - 1 \end{array} $
3.	Blackman	$0.42-05\cos\frac{2\pi n}{M-1}+0.08$ $\cos\frac{4\pi n}{M-1}$	$ \begin{array}{c} \omega(n) \\ 1 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0 \\ \end{array} $
4.	Hanning	$0.54 - 0.46 \cos \frac{2\pi n}{M - 1}$	$ \begin{array}{c} \omega(n) \\ 1 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 0 \end{array} $

Various other window functions

458 DD Digital Signal Processing



Comparative Study for Trade Off between Attenuation of Sidelobes & Transition Width of main Lobe.

Commonly Used Windows

S. No.	Name of Window	Transition width of the main lobe	Minimum stopband attenuation	Relative amplitude of sidelobe
1.	Rectangular window	$\frac{4\pi}{M+1}$	– 21 dB	– 13 dB
2.	Bartlett window	$\frac{8\pi}{M}$	– 25 dB	– 25 dB
3.	Hanning window	$\frac{8\pi}{M}$	– 44 dB	– 31 dB
4.	Hamming window	$\frac{8\pi}{M}$	– 53 dB	– 41 dB
5.	Blackman window	$\frac{12\pi}{M}$	– 74 dB	– 57 dB

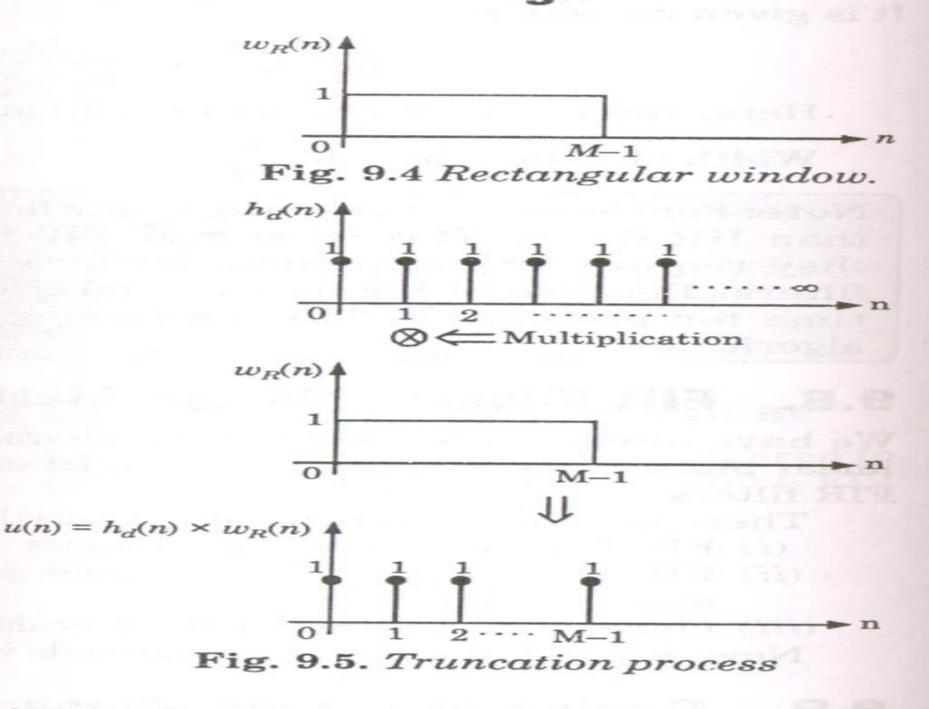
It may be noted that the characteristics of Kaisor window have not been mentional

FIR Filter Design: Rectangular Window

- Let w(n)=Rectangular Window Function,
- Where
- w(n)=1 $0 \le n \le M-1$

hd(n)=Infinite Input Sequence(Arbitrary),&

h(n)=Finite Truncated Impulse Response. Then h(n)= $hd(n) \times w(n)$



n = 0.1 M = 1

for

Gibbs Phenomenon:Ringing Effect/Oscillatory Behaviour due to Sidelobes(generated owing to the sharp cut-off/abrupt discontinuity) in the Frequency Response of the window Function

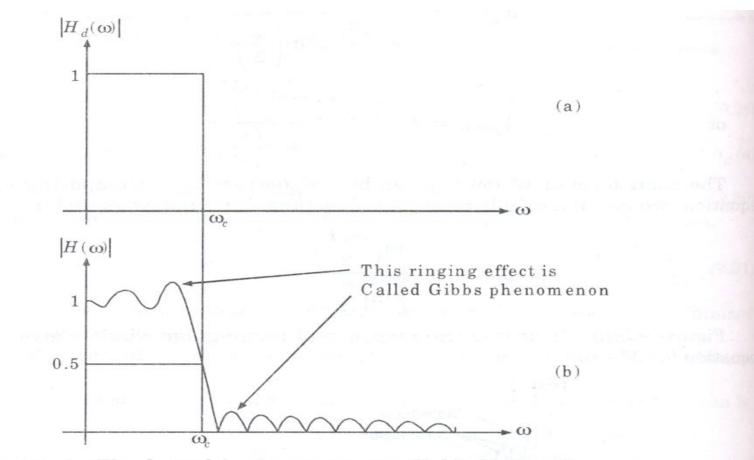


Fig. 9.6. (a) The desired frequency response $H_d(\omega)$ (b) The frequency response of FIR filter obtained by windowing. It has smoothing and ringing effect because of windowing.